Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Ufuk Coruh, ${ }^{\text {a* }}$ Aliye Altundas, ${ }^{\text {b }}$
Abdullah Menzek ${ }^{\text {c }}$ and Santiago García-Granda ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Computer Education and Instructional Technology, Faculty of Education, Ondokuz Mayıs University, Atakum-55200/ Samsun, Turkey, ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Arts and Sciences, Gazi University, 06500-Ankara, Turkey, ${ }^{\text {c }}$ Department of Chemistry, Faculty of Arts and Sciences, Atatürk University, 25240-Erzurum, Turkey, and
${ }^{\text {d Departamento de Química Física y Analítica, }}$ Universidad de Oviedo, Avda. Julián Clavería 8, 33006 Oviedo, Spain

Correspondence e-mail: ucoruh@hotmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.104$
Data-to-parameter ratio $=15.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

12-Bromo-1,2,3,4-tetrahydro-1,4-ethano-anthracen-11-ol

The title compound, $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}$, contains two non-planar sixmembered rings constituting a bicyclic system. One of these rings shares two C atoms with an ethanoanthracene moiety, while the second ring has bromo and hydroxy substituents. The bicyclic system has approximate D_{3} symmetry. There are two molecules in the asymmetric unit. Two strong hydrogen bonds, with D . .A distances of 2.765 (2) and 2.818 (2) \AA, are observed between O atoms.

Comment

$1 R(S), 2 R(S), 3 R(S), 10 S(R), 11 S(R), 12 S(R)$-3,10-Epoxytetracyclo[10.2.2.0 ${ }^{2,11} .0^{4,9}$]hexadeca-4,6,8,13-tetraene (Menzek et al., 2004) was obtained from the cycloaddition reaction of oxobenzonorbornadiene with cyclohexadiene, and has one double bond and 1,4 -epoxide as functional groups. These systems are important and undergo reactions such as rearrangement reactions (Menzek et al., 1997; Altundaş et al., 2000; Menzek, 2000; Daştan , 2001; Menzek \& Gökmen, 2002; Menzek \& Karakaya, 2004). $1 R(S), 2 R(S), 3 R(S), 10 S(R)$,$11 S(R), 12 S(R)$-3,10-Epoxytetracyclo[10.2.2.0 $\left.{ }^{2,11} .0^{4,9}\right]$ hexa-deca-4,6,8,13-tetraene was reacted with bromine in carbon tetrachloride at low temperature, and $1 S(R), 2 S(R), 3 S(R)$, $10 S(R), 12 R(S), 13 R(S), 14 R(S), 17 S(R)$-13-bromo-11-oxa pentacyclo[8.7.0.0 $0^{2,14} .0^{4,9} .0^{12,17}$]heptadeca-4,6,8-trien-3-ol (Çoruh et al., 2002) and the title compound, (I), were isolated from the reaction mixture as rearranged products. There are examples (Konaklieva et al., 1992; Sharghi et al., 2001) showing that 1,2 -epoxides are opened in the presence of halogens. To explain the mechanisms of the rearrangement reactions, the structures of products such as (I) should be determined.

(I)

The crystal structure of (I) contains two independent molecules in the asymmetric unit, denoted A and B (Fig.1). The molecules contain a naphthalene ring system fused to a bicyclic system. As can be seen from the torsion angles (Table 1) and the puckering parameters (Cremer \& Pople, 1975), the bicyclic system has approximate D_{3} symmetry, but the presence of substituents, and the resulting intramolecular contacts and intermolecular hydrogen bonds, lead to some deviations from ideal geometry.

Received 4 May 2005 Accepted 18 May 2005 Online 28 May 2005

Figure 1
A view of the asymmetric unit of (I), with the atomic numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

In the bicyclic fragments of molecules A and B, the three six-membered rings adopt boat conformations: $Q_{\mathrm{T}}=$ $0.837(3) \AA, \varphi_{2}=-66.4(2)^{\circ}$ and $\theta_{2}=92.7$ (2) ${ }^{\circ}$ for the $\mathrm{C} 1 a-\mathrm{C} 6 a$ ring, $Q_{\mathrm{T}}=0.842$ (3) $\AA, \varphi_{2}=125.86(18)^{\circ}$ and $\theta_{2}=92.7(9)^{\circ}$ for the $\mathrm{C} 1 a-\mathrm{C} 3 a / \mathrm{C} 16 a / \mathrm{C} 7 a / \mathrm{C} 6 a$ ring, $Q_{\mathrm{T}}=0.795 \AA, \varphi_{2}=2.9(2)^{\circ}$ and $\theta_{2}=89.6(2)^{\circ}$ for the $\mathrm{C} 3 a-\mathrm{C} 7 a / \mathrm{C} 16 a$ ring, $Q_{\mathrm{T}}=$ $0.839(3) \AA, \varphi_{2}=-62.94(19)^{\circ}$ and $\theta_{2}=92.40(19)^{\circ}$ for the $\mathrm{C} 1 b-\mathrm{C} 6 b$ ring, $Q_{\mathrm{T}}=0.813(13) \AA, \varphi_{2}=123.08(19)^{\circ}$ and $\theta_{2}=$ 92.15 (19) ${ }^{\circ}$ for the $\mathrm{C} 1 b-\mathrm{C} 3 b / \mathrm{C} 16 b / \mathrm{C} 7 b / \mathrm{C} 6 b$ ring, and $Q_{\mathrm{T}}=$ 0.809 (3) $\AA, \varphi_{2}=0.1$ (2) ${ }^{\circ}$ and $\theta_{2}=90.1$ (2) ${ }^{\circ}$ for the $\mathrm{C} 3 b-\mathrm{C} 7 b /$ $\mathrm{C} 16 b$ ring. The deviation from the ideal D_{3} symmetry in the bicyclic rings can be seen by examination of the dihedral angles between the planes defining the three rings: in molecule $A, \mathrm{C} 1 a-\mathrm{C} 3 a / \mathrm{C} 6 a($ plane $A), \mathrm{C} 3 a / \mathrm{C} 16 a / \mathrm{C} 7 a / \mathrm{C} 6 a$ (plane B) and C3a-C6a (plane C) $\left[A / B=61.94(14)^{\circ}, A / C=59.96(12)^{\circ}\right.$ and $\left.B / C=58.16(14)^{\circ}\right]$, and in molecule $B, \mathrm{C} 1 b-\mathrm{C} 3 b / \mathrm{C} 6 b$ (plane $D), \mathrm{C} 3 b / \mathrm{C} 16 b / \mathrm{C} 7 b / \mathrm{C} 6 b$ (plane E) and $\mathrm{C} 3 b-\mathrm{C} 6 b$ (plane F) $[D /$ $E=60.15(13)^{\circ}, D / F=60.51(14)^{\circ}$ and $\left.E / F=59.35(12)^{\circ}\right]$.

Experimental

To a stirred solution of $1 R(S), 2 R(S), 3 R(S), 10 S(R), 11 S(R), 12 S(R)$ -3,10-epoxytetracyclo[10.2.2.0 $\left.0^{2,11} .0^{4,9}\right]$ hexadeca-4,6,8,13-tetraene $(200 \mathrm{mg}, 0,89 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(20 \mathrm{ml}), \mathrm{Br}_{2}(158 \mathrm{mg}, 0,99 \mathrm{mmol}$, in 1 ml of CCl_{4}) was added dropwise at 272 K for 5 min . The mixture was stirred for 30 min and the solvent was then evaporated. According to the NMR spectrum of the residue, $1 R(S), 2 R(S), 3 R(S), 10 S(R)$,$11 S(R), 12 S(R)$-3,10-epoxytetracyclo $\left[10.2 \cdot 2 \cdot 0^{2,11} .0^{4,9}\right]$ hexadeca-$4,6,8,13$-tetraene was absent from the reaction mixture. The residue was subjected to PLC (preparative thick-layer chromatography) with diethyl ether/hexane (1:1). $1 S(R), 2 S(R), 3 S(R), 10 S(R), 12 R(S)$,$13 R(S), 14 R(S), 17 S(R)$-13-Bromo-11-oxapentacyclo[8.7.0.0 $0^{2,14} .0^{4,9}$.$\left.0^{12,17}\right]$ heptadeca-4,6,8-trien-3-ol (Çoruh et al., 2002) and compound (I) $(56 \%, 150 \mathrm{mg})$ were isolated from the reaction mixture as rearranged products. For (I): m.p. 388-390 K (white crystals from diethyl ether/hexane); ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83-7.78$ ($A A$ part of $A A B B$ system, aromatic, 2 H), 7.62 (s, aromatic, 1 H), 7.56 (s, aromatic, 1 H), 7.51-7.42 ($B B$ part of $A A B B$ system, aromatic, 2 H), $4.22(d t, J=7.37$ and $3.04 \mathrm{~Hz}, \mathrm{CHOH}, 1 \mathrm{H}), 3.68(m, \mathrm{CHBr}, 1 \mathrm{H}), 3.33-$
3.29 (m , bridgehead, $\mathrm{CH}-\mathrm{CHBr}, 1 \mathrm{H}$), 3.01 (m , bridgehead, $\mathrm{CH}-$ $\mathrm{CHOH}, 1 \mathrm{H}), 2.34(b r t, J=11.63 \mathrm{~Hz}$, methylenic, 1 H$), 2.00(d, J=$ $7.37 \mathrm{~Hz}, \mathrm{OH}, 1 \mathrm{H}), 1.89(b r t, J=9.17 \mathrm{~Hz}$, methylenic, 1 H$), 1.59(d t, J=$ 11.72 and 3.68 Hz , methylenic, A part of $A B$ system, 1 H), 1.51-1.36 (m, methylenic, 1 H); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.01$ (C), 137.62 (C), 135.08 (C), 135.03 (C), $129.88(\mathrm{CH}), 129.61(\mathrm{CH}), 127.70$ $(\mathrm{CH}), 127.64(\mathrm{CH}), 126.87(\mathrm{CH}), 124.58(\mathrm{CH}), 81.76(\mathrm{C}-\mathrm{OH}), 61.51$ (C-Br), 44.97, 44.39, 25.22, 21.90; IR, $v_{\max }$ (KBr): 3336, 3080, 3029, 2953, 2927, 1600, 1523, 1472, 1446, 1421, 1370, 1344, $1293 \mathrm{~cm}^{-1}$.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{BrO}$
$M_{r}=303.20$
Triclinic, $P \overline{1}$
$a=9.854(1) \AA$
$b=12.316(1) \AA$
$c=12.488(1) \AA$
$\alpha=97.928(10)^{\circ}$
$\beta=77.248(10)^{\circ}$
$\gamma=66.719(10)^{\circ}$
$V=1351.3(2) \AA^{\circ}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans 9387 measured reflections 5043 independent reflections 4542 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.490 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation

Cell parameters from 4542 reflections

$$
\theta=1.7-25.6^{\circ}
$$

$\mu=3.03 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.15 \times 0.07 \times 0.06 \mathrm{~mm}$

$$
R_{\text {int }}=0.026
$$

$$
\theta_{\text {max }}=25.6^{\circ}
$$

$$
\begin{aligned}
& \theta_{\max }=25.0^{\prime} \\
& h=-11 \rightarrow 11
\end{aligned}
$$

$$
k=-14 \rightarrow 14
$$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0443 P)^{2}\right. \\
\quad+0.8183 P] \\
\text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.57 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.96 \mathrm{e}^{-3}
\end{gathered}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.104$
$S=1.10$
5043 reflections
325 parameters
H -atom parameters constrained
$l=-15 \rightarrow 15$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Br} 1 a-\mathrm{C} 1 a$	$1.969(2)$	$\mathrm{C} 2 a-\mathrm{C} 1 a$	$1.540(3)$
$\mathrm{Br} 1 b-\mathrm{C} 1 b$	$1.977(2)$	$\mathrm{C} 2 b-\mathrm{C} 1 b$	$1.541(3)$
$\mathrm{O} 1 a-\mathrm{C} 2 a$	$1.430(3)$	$\mathrm{C} 5 b-\mathrm{C} 4 b$	$1.534(4)$
$\mathrm{O} 1 b-\mathrm{C} 2 b$	$1.420(3)$	$\mathrm{C} 4 a-\mathrm{C} 5 a$	$1.540(4)$
$\mathrm{C} 2 a-\mathrm{O} 1 a-\mathrm{H} 1 A a$	109.5	$\mathrm{C} 6 a-\mathrm{C} 1 a-\mathrm{Br} 1 a$	$111.21(16)$
$\mathrm{O} 1 a-\mathrm{C} 2 a-\mathrm{C} 3 a$	$113.2(2)$	$\mathrm{C} 2 a-\mathrm{C} 1 a-\mathrm{Br} 1 a$	$111.26(16)$
$\mathrm{O} 1 a-\mathrm{C} 2 a-\mathrm{C} 1 a$	$106.81(19)$	$\mathrm{C} 6 b-\mathrm{C} 1 b-\mathrm{Br} 1 b$	$111.14(16)$
$\mathrm{O} 1 b-\mathrm{C} 2 b-\mathrm{C} 3 b$	$110.1(2)$	$\mathrm{C} 2 b-\mathrm{C} 1 b-\mathrm{Br} 1 b$	$111.28(16)$
$\mathrm{O} 1 b-\mathrm{C} 2 b-\mathrm{C} 1 b$	$110.42(19)$		
$\mathrm{O} 1 a-\mathrm{C} 2 a-\mathrm{C} 1 a-\mathrm{C} 6 a$	$132.7(2)$	$\mathrm{Br} 1 b-\mathrm{C} 1 b-\mathrm{C} 6 b-\mathrm{C} 5 b$	$-69.8(2)$
$\mathrm{O} 1 a-\mathrm{C} 2 a-\mathrm{C} 1 a-\mathrm{Br} 1 a$	$-102.96(19)$	$\mathrm{O} 1 b-\mathrm{C} 2 b-\mathrm{C} 3 b-\mathrm{C} 16 b$	$-68.5(2)$
$\mathrm{O} 1 b-\mathrm{C} 2 b-\mathrm{C} 1 b-\mathrm{C} 6 b$	$127.1(2)$	$\mathrm{O} 1 b-\mathrm{C} 2 b-\mathrm{C} 3 b-\mathrm{C} 4 b$	$174.76(19)$
$\mathrm{O} 1 b-\mathrm{C} 2 b-\mathrm{C} 1 b-\mathrm{Br} 1 b$	$-108.38(18)$	$\mathrm{C} 1 b-\mathrm{C} 2 b-\mathrm{C} 3 b-\mathrm{C} 4 b$	$-64.2(2)$
$\mathrm{O} 1 a-\mathrm{C} 2 a-\mathrm{C} 3 a-\mathrm{C} 16 a$	$-67.5(2)$	$\mathrm{Br} 1 a-\mathrm{C} 1 a-\mathrm{C} 6 a-\mathrm{C} 7 a$	$170.92(16)$
$\mathrm{O} 1 a-\mathrm{C} 2 a-\mathrm{C} 3 a-\mathrm{C} 4 a$	$175.11(19)$	$\mathrm{Br} 1 a-\mathrm{C} 1 a-\mathrm{C} 6 a-\mathrm{C} 5 a$	$-72.2(2)$
$\mathrm{Br} 1 b-\mathrm{C} 1 b-\mathrm{C} 6 b-\mathrm{C} 7 b$	$174.22(15)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1a-H1Aa $\cdots \mathrm{O}_{1} b^{\mathrm{i}}$	0.82	2.05	$2.765(2)$	145
O1 $^{\text {ii }}-\mathrm{H} 1 B b \cdots \mathrm{O}^{\text {ii }}$	0.82	2.10	$2.811(2)$	145

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x, y+1, z$.

organic papers

All H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic), 0.97 (methylene) and $0.98 \AA$ (other CH), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: COLLECT (Nonius, 2000); cell refinement: $H K L$ SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PARST95 (Nardelli, 1995), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

We thank the Spanish MCyT (BQU2000-0219) and FICYT (PR-01-GE-4) for financial support.

References

Altundaş, A., Daştan, A., McKee, M. M. \& Balcı, M. (2000). Tetrahedron, 56, 6115-6120.

Çoruh, U., Garcia-Granda, S., Menzek, A., Altundaş, A., Akbulut, N. \& Erdönmez, A. (2002). Acta Cryst. E58, o1234-o1236.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Daştan, A. (2001). Tetrahedron, 57, 8725-8732.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Konaklieva, M. I., Dahl, M. L. \& Turos, E. (1992). Tetrahedron Lett. 33, 70937096.

Menzek, A. (2000). Tetrahedron, 56, 8505-8512.
Menzek, A., Altundaş, A., Çoruh, U., Akbulut, N., Vazquez Lopez, E. M., Hökelek, T. \& Erdönmez, A. (2004). Eur. J. Org. Chem. 5, 1143-1148.
Menzek, A. \& Gökmen, M. (2002). J. Chem. Res. (S), pp. 475-476.
Menzek, A. \& Karakaya, M. (2004). Turk. J. Chem. 28, 141-148.
Menzek, A., Saraçog̃lu, N., Daştan, A., Balcı, M. \& Abbaasog̃lu, R. (1997). Tetrahedron, 53, 14451-14462.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sharghi, H., Nikman, K. \& Pooyan, M. (2001). Tetrahedron, 57, 6057-6064.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

